11 research outputs found

    Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    Get PDF
    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion, editors; v2: minor edits from journal revision

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

    Get PDF
    A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the LHC and correspond to an integrated luminosity of 315 nb(-1) collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% C. L. the q* mass interval 0: 30< m(q)*< 1:26 TeV, extending the reach of previous experiments

    Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

    Get PDF
    Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb−1 recorded at the Large Hadron Collider. The anti-k t algorithm is used to identify jets, with two jet resolution parameters, R=0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable χ. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime

    Performance of the ATLAS Detector using First Collision Data

    Get PDF
    More than half a million minimum-bias events of LHC collision data were collected by the ATLAS experiment in December 2009 at centre-of-mass energies of 0.9 TeV and 2.36 TeV. This paper reports on studies of the initial performance of the ATLAS detector from these data. Comparisons between data and Monte Carlo predictions are shown for distributions of several track- and calorimeter-based quantities. The good performance of the ATLAS detector in these first data gives confidence for successful running at higher energies

    Performance of the ATLAS detector using first collision data

    No full text

    Measurement of the isolated diphoton cross-section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The ATLAS experiment has measured the production cross-section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set acquired in 2010 is used, corresponding to an integrated luminosity of 37 pb^-1. The background, consisting of hadronic jets and isolated electrons, is estimated with fully data-driven techniques and subtracted. The differential cross-sections, as functions of the di-photon mass, total transverse momentum and azimuthal separation, are presented and compared to the predictions of next-to-leading-order QCD.Comment: 15 pages plus author list (27 pages total), 9 figures, 2 tables, final version to appear in Physical Review

    Measurement of the W -> lv and Z/gamma* -> ll production cross sections in proton-proton collisions at root s=7 TeV with the ATLAS detector

    No full text
    First measurements of the W → ℓν and Z/γ * → ℓℓ (ℓ = e, μ) production cross sections in proton-proton collisions at √ s = 7TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W → ℓν and 179 Z/γ* → ℓℓ candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/ γ*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are σtotW · BR(W → ℓν) = 9.96 ± 0.23(stat) ± 0.50(syst) ± 1.10(lumi) nb and σtotZ/γ* · BR(Z/ γ* → ℓℓ) = 0.82 ± 0.06 (stat) ± 0.05 (syst) ± 0.09 (lumi) nb (within the invariant mass window 66 < mℓℓ < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 ± 0.9(stat) ± 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements
    corecore